Influence of primary precipitate shape, size volume fraction and distribution in PM tool steels on galling resistance

نویسنده

  • Oscar Andersson
چکیده

In sheet metal forming (SMF), the major failure reason is galling. Galling is a process of different wear stages that leads to destruction of both the forming tool and the sheet metal working piece and is, because of that, of big economic importance for the SMF industries. Therefore, investigations and researches about how tool steels microstructure affect the tool steels galling resistance is of high priority. In the present work, different carbide properties were studied to find out how their properties affected the tool materials galling resistance. The investigated carbide properties were:  Shape and size of the carbides  Carbide volume fraction  Carbide distribution in the microstructure The investigation included three tools, all made of the PM tool steel S390, that were heattreated differently in order to achieve different carbide properties but still maintain the same hardness. The tools were galling tested in a slider-on-flat-surface (SOFS) tribometer to determine their galling resistances. In a scanning surface electron microscope (SEM) the tools galling marks were analyzed to find explanations for the SOFS tribometer results and the connection to the tools different carbide properties. The investigations most galling resistant tool was the tool that had the microstructure with largest carbides which were distributed at grain boundaries and the second highest carbide volume fraction among the investigated tools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of microalloying precipitates on Bauschinger effect during UOE forming of line pipe steels

Large diameter steel line pipes are generally produced by cold deforming hot rolled or thermomechanically controlled rolled (TMCR) plate by the three-stage 'UOE' process. Pipe strength has been found to increase or decrease relative to the plate, depending on the steel grade and plate processing history. The strength increase is due to work hardening whereas any decrease in strength arises from...

متن کامل

THE EFFECT OF HEAT TREATMENT ON ABRASIVE WEAR RESISTANCE OF Fe-34Cr-4.5C%WT HARDFACING ALLOY

Abstract: Hardfacing is one of the most useful and economical ways to increase the service life of components subjected to abrasive wear. Iron based hardfacing alloys have long been considered as candidate coatings for wear-resistant applications in industry. In the present work two layer of Fe-34Cr-4.5C%wt hardfacing alloy was deposited on ASTM A36 carbon steel plates by SMAW method. The m...

متن کامل

THE EFFECT OF COOLING RATE AND AUSTENITE GRAIN SIZE ON THE AUSTENITE TO FERRITE TRANSFORMATION TEMPERATURE AND DIFFERENT FERRITE MORPHOLOGIES IN MICROALLOYED STEELS

Abstract: transformation temperature and different ferrite morphologies in one Nb-microalloyed (HSLA) steel has beeninvestigated. Three different austenite grain sizes were selected and cooled at two different cooling rates for obtainingaustenite to ferrite transformation temperature. Moreover, samples with specific austenite grain size have beenquenched, partially, for investigation on the mic...

متن کامل

Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

In this STIR we proposed to investigate the microstructure and alloy composition on the formation and stability of nanotwinned microstructures. The long-term alloy design strategy focuses on microalloying additions to 1) reduce the stacking fault energy (SFE), enhance twinning formation, and increase twin volume fraction; 2) reduce the twin size via increasing interstitial content while also ta...

متن کامل

Particle-Size-Grouping Model of Precipitation Kinetics in Microalloyed Steels

The formation, growth, and size distribution of precipitates greatly affects the microstructure and properties of microalloyed steels. The computational Particle-Size-Grouping (PSG) kinetic models were developed to simulate precipitate particle growth due to collision and diffusion mechanisms. Firstly, the standard PSG method for collision is clearly explained and verified. Then a new PSG metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015